class Ring {
Int[] elems
static Int fac(Int x) {
if (x < 2) {
return 1
} else {
return x * fac(x-1)
}
}
Int[] NthLP(Int N, Int[] p, Int[] rem) {
if (rem.size == 1) {
p.addAll(rem)
return p
}
Int k := fac(rem.size - 1)
Int timesDivided := N / k
p.add(rem[timesDivided])
rem.removeAt(timesDivided)
return NthLP(N % k, p, rem)
}
Bool isMagic() {
Int target := elems[4] + elems[9] + elems[5]
for (i := 0; i < 4; ++i) {
if (elems[i] + elems[5+i] + elems[6+i] != target) {
return false
}
}
return true
}
Str description() {
Int minIndex := 0
Str desc := ""
5.times |i| { if (elems[i] < elems[minIndex]) {
minIndex = i} }
5.times |i| {
Int j := (i + minIndex) % 5
[elems[j], elems[5+j],
elems[(j == 4 ? 5 : 6 + j)]].each |d| { desc += "$d" }
}
return desc
}
new make(Int N) {
//construct a Ring with elements
//in the formation of the Nth Lexicographic permutation
this.elems = NthLP(N, [,], [10,1,2,3,4,5,6,7,8,9])
}
}
class E68 {
static Void main() {
Str maxstr := ""
for (i := 0; i < Ring.fac(10); ++i) {
Ring r := Ring(i)
Str s := ""
if (r.isMagic()) {
s = r.description()
if (s.size() > 16) {
break
} else if (s.compare(maxstr) > 0) {
maxstr = s
}
}
}
echo(maxstr)
}
}
Tuesday, November 26, 2013
Problem 68 - Fantom
Fantom is yet another language that runs on the JVM, though the designers of Fantom don't stop there - it can also compile to code for the .NET framework or javascript. Anyway, its a fairly simple language with a common Scala/Java/Gosu/C/C#/Squirrel/Ceylon/How many curly-braced languages are there again? syntax. I decided to use it on problem 68 as the problem is not all that hard using a nice object oriented approach and ordering the different kinds of rings with lexicographic permutations (I think I have written that NthLP method in at least 4 different languages by now). Runs in about 1.8s on my machine.
Subscribe to:
Post Comments (Atom)
No comments:
Post a Comment